Search results for "operatorial model"
showing 6 items of 6 documents
Population dynamics based on ladder bosonic operators
2021
Abstract We adopt an operatorial method, based on truncated bosons, to describe the dynamics of populations in a closed region with a non trivial topology. The main operator that includes the various mechanisms and interactions between the populations is the Hamiltonian, constructed with the density and transport operators. The whole evolution is derived from the Schrodinger equation, and the densities of the populations are retrieved from the normalized expected values of the density operators. We show that this approach is suitable for applications in very large domain, solving the computational issues that typically occur when using an Hamiltonian based on fermionic ladder operators.
Modeling epidemics through ladder operators
2020
Highlights • We propose an operatorial model to describe epidemics. • The model describes well the asymptotic numbers of the epidemics. • Ladder operators are used to model exchanges between the “actors” of the system.
Non-hermitian operator modelling of basic cancer cell dynamics
2018
We propose a dynamical system of tumor cells proliferation based on operatorial methods. The approach we propose is quantum-like: we use ladder and number operators to describe healthy and tumor cells birth and death, and the evolution is ruled by a non-hermitian Hamiltonian which includes, in a non reversible way, the basic biological mechanisms we consider for the system. We show that this approach is rather efficient in describing some processes of the cells. We further add some medical treatment, described by adding a suitable term in the Hamiltonian, which controls and limits the growth of tumor cells, and we propose an optimal approach to stop, and reverse, this growth.
Spreading of Competing Information in a Network
2020
We propose a simple approach to investigate the spreading of news in a network. In more detail, we consider two different versions of a single type of information, one of which is close to the essence of the information (and we call it good news), and another of which is somehow modified from some biased agent of the system (fake news, in our language). Good and fake news move around some agents, getting the original information and returning their own version of it to other agents of the network. Our main interest is to deduce the dynamics for such spreading, and to analyze if and under which conditions good news wins against fake news. The methodology is based on the use of ladder fermion…
(H,ρ)-induced dynamics and large time behaviors
2018
In some recent papers, the so called (H,ρ)-induced dynamics of a system S whose time evolution is deduced adopting an operatorial approach, borrowed in part from quantum mechanics, has been introduced. Here, H is the Hamiltonian for S, while ρ is a certain rule applied periodically (or not) on S. The analysis carried on throughout this paper shows that, replacing the Heisenberg dynamics with the (H,ρ)-induced one, we obtain a simple, and somehow natural, way to prove that some relevant dynamical variables of S may converge, for large t, to certain asymptotic values. This cannot be so, for finite dimensional systems, if no rule is considered. In this case, in fact, any Heisenberg dynamics im…
Dynamics for a quantum parliament
2023
In this paper we propose a dynamical approach based on the Gorini-Kossakowski-Sudarshan-Lindblad equation for a problem of decision making. More specifically, we consider what was recently called a quantum parliament, asked to approve or not a certain law, and we propose a model of the connections between the various members of the parliament, proposing in particular some special form of the interactions giving rise to a {\em collaborative} or non collaborative behaviour.